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Deformable Body Simulation




Limited Human Interactivity in Mixed Reality Environments




Limited Materials in Real-time Simulators




[Bai et al. 2016]

Robotics




Rigid Body V.S. Deformable Body




Goal: Fast simulation of general deformable objects




Goal: Fast simulation of general
deformable objects
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Related Work: Classic work

[Baraff and Witkin 1998] [Goldenthal et al. 2007]  [Tournier et al. 2015]

Towards Real-time Simulation of Deformable Objects




Related Work: Position Based Dynamics

[Muller et al. 2007] [Macklin et al. 2016]

Quasi-Newton Methods for Real-time Simulation of Hyperelastic Materials




Simulation: Prediction of Future
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Temporal Discretization

» Newton’s 2"d Law of Motion
v(t)dt

! (fmt (x(t)) + fBXt)dt
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Temporal Discretization

» Implicit Euler Integration

P Xni1 = Xp + Ay
PVt = Uy hM_l(fint(xn+1) fext)

>xn+1 = Xn + hvn + hZM_lfext + th_lfint(xn+1) \
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Temporal Discretization

» Variational Implicit Euler

. 1
>Xnt1 = argmiiy, -5 lx — yllm + E(x)
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Typical workflow of a deformable body
simulation

Numerical
Solution

Spatial
Discretization

Temporal
Discretization




Numerical Solution

Ax = —[V2g(x)] Vg (x)




Numerical Solution: Newton's Method

min s I = Vil + ECO)
—
© ®
® » Slow

» V2E depends on x

& » Non-convex
» The Hessian M/h? + V2E can be indefinite




Non-convex Potential
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Numerical Solution: Newton's Method

0.2

0.157

Spring Energy
o

0.05¢

SN

1.5




ldeal Numerical Problems

Large Convex Quadratic Problem

(Ideally with Constant System Matrix)

aoeees --- @

Many Small Non-convex Problems
(Ideally Independent)




Mass-spring Systems

Fast Simulal
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Fast Simulation of Mass-Spring Systems
Tiantian Liu, Adam W. Bargteil, James F. O'Brien,

Figure 10 When used i simulate the wosion of a cloh with 6361 vertices our method (lefi) produces rei-time resulis on a single CPL
comparable 1o those obrained with a miuck slower off-line merlod finiddle ). The method atso performs well for one dimensional srrands,
velutairic shjects, and charactsr clothing (Hight).

Abstract

We describe a scheme for time infegration of mass-spring system-
s thal mukes vse of u solver based on block covrdmale descent,
This scheme provides a fast selution for classieal linear {Heokean)
springs., We express the widely used wuplicit Buler method as an
energy mimmization problem and introduce spring direchions as
wuxiliary unknown variahles, The systen is ghobally Tinear in the
nede positiens, and the non-linear ferms ivolwing the direcrions
ure strietly local, Becuuse the global Tinear system does not depend
on ran-time state. the matrix can be pre-factored, allowing for very
Last ierutions. Our method cony s 10 (he same Goul result as
would he abtained hy solving the standard form of implicit Fuler
using Newton's method. Although the asymptotic conveigence of
Newton's method is faster than ours, the mill rabie of work 10
error recigtion with owe method is much faster than Newton's, Lor
real-lime visual upplications, where speed und stubilily ure more
impertant than precision, we ebtain visually acceptable results at a
(olul ¢ost per Lumesiep it is only o Tuction of that required for
single Newton iteration, When higher accuracy is required, our alga-
Tithin can be wsed 16 compuie a good sturting point for subsequent
Newton's iteration,

CR Categories: 13.7 [Computer Graphics]: Three-Dimensional
Graphics—Animation; 16,8 [Simulation and Modeling - Types of
Sunulution  Animtion.

“Jadislaw kavan G gmail.com

Keywords: Time integration, mplicit Fuler method, mass-spring
syslens.

Links: @DL FppE GvinEe BWER

1 Introduction

Mass-spring systemns provide a simple vet practical methad for med-
cling @ wide varioty of objeels, including cloth, hair, und deforinuble
solids. However, as with ather methods for modeling elasticity, ob-
lwining realistic waterial behaviors typically requires coustiutive
parameters that result. in numerically stiff systems. Fa time inta-
gration metheds are Tast but when applied to these stift sysiems they
fuve suubilily problems und are prone o failure, Traditional mehods
tor implicir integration remain stable buf require solving large svs-
Lemus of equations [Bural and Wilkin 1998; Press et ul, 20071, The
high cost of solving these systems of equations limits their utility
for reul-inm applications (2.g., pumes) and dlows produgtion work
flews i off-line scuings (e.2., fln and visval effects),

Tn this paper. we propose a fast implicit solver for siandard mass-
spring s¥stens with spring forces poverned by Hooke's 1aw. Wi cor-
sider the eptimization fornulation of inplizil Euler inlegration MMar-
tinetal. 2011], where time-stepping is cast as a minimization prob-
Jem. Our method works well with large timesieps  most of our
caamples assume a fixed timestep corresponding (o the framcrate,
.2 b = 1905, Tn cantrast i the traditional approach of employing
Neweton’s method, we refermulate this minimization problem by
iniroducing ausiliary variables (spring directions), This allows us to
apply a block eoordinate descent method which alternates between
finding optimal spring directions (local siep) und findmg node po-
sitions (global step). In the global step, we solve a linear sysiem.
“The mutrix of our lincar system is independent of the current state,
which allows us to henefit from a pre.computed sparse Cholesky
Lactorization,

Newton's method is known for its excellent convergeliee propeitios,
When the ilerales are sulliciently close o (he optimun, Newlon's
merhod exhibits quadratic convergence which out performs block

Ladislav Kavan

ACM Transactions on Graphics 32(6) [Proceedings

of SIGGRAPH Asia], 2013
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Mass-spring System: Basis

Hooke’s Law:

1
E(xq,x5) = Ek(”xl — x3|| — 1)*




Hooke’s Law with auxiliary variables

» For the j-th spring:
> Ej(x) = %kj(ule — xi2|| — 1jo)°

» Introduce auxiliary variable p; where ||p;|| = Lo
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Hooke’s Law with auxiliary variables

. 2 2
> min (3l = 2 = 1) = il = el = o)
JIN—"]

le—sz

|21 =2z |

»When p; = [
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Hooke’s Law with auxiliary variables

1 2
E@ =) ( min (Skllx -2 -yl
= \lpjll=to; \2 7770 7%

E(x) = Il;ré}ﬂr/[l‘ (2 (1




Hooke’s Law with auxiliary variables

xj; — xj,: Discrete Shape Descriptor
0 _xI_
) x]
1 |j1

X, — X, =Gjx _ :
—1]j2 :
0 :
0 Xn




Hooke’s Law with auxiliary variables

p’;: Projection

o T
0 2
1| j
pj =S;p s
0 :
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Hooke’s Law with auxiliary variables

1
E(x) = {.25«‘} (Z (_k'ijTl — Xj; — pJTHZ))
E(x)—mln tr(x (ZkGGT> ) tr(x (szsT> )

g g
L J

1
E(x) = ml]\r/} > tr(x"Lx) — tr(x"Jp) + C




Variational Time Integration with
Auxiliary Variable

1
mlnz—hzt‘r((x — )M (x — y)) + E(x)
min ! tr((c—y)TM(x —y)) + = L tr(xTLx) —tr(x"Jp) + C
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Optimization

1

1
_ T _ T . T
pmin s tr(( = TMG =) + 5t (L) — tr(«TJp) + €

» M,L,],c does not depend on x or p

» If we fix x -> easy to solve for p

» If we fix p -> easy to solve for x

» Invites alternate solver (local/global)




Local Step

» For each spring, project to unit length using the
current x to find p;

» Trivially Parallelizable

0:%/ o \
Xi1




Global Step

1 1
_ T _ T . T
pmin s tr(G = TMG =) + 5t (L) — tr(«TJp) + €

| (M M
Fix p: x" = h2+L ﬁy_l_]p

» System matrix (M/h? + L) is:
» Independent of x and p (Constant)
» Positive Definite
» Thus can be pre-factorized (using e.g. Cholesky)




Alternating Solver

Large Convex Quadratic Problem

(with a Constant System Matrix)

aoseead --- @

Many Small Non-convex Problems




Performance

relative error

[ Newton’s ]
Method
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Results: Mass-spring Systems




Results: Mass-spring Systems




Results: Mass-spring Systems
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Remark: Fast Mass-spring Systems

1
mmz—hztr((x —TM(x —y)) + E(x)

1 2 _ 1 2
25 Ulgia = %j2ll = Go)” = min (5 killxjs = 22 = | )

min ! —tr((x =) "TM(x —y)) + = L tr(xTLx) —tr(x"Jp) + C \




Remark: Fast Mass-spring Systems

Formulate IE as an Optimization Problem

Formulate Hooke’s Law with an Auxiliary Variable

Local/global Solve




Remark: Fast Mass-spring Systems

1
mmz—hztr((x —TM(x —y)) + E(x)

1 2
5"1‘(”’9‘1 — x5 || = ljo)” =

1 1
— T _ T _ T
pmin s tr(G = TMG =) + 5t (L) — tr(«TJp) + €




Remark: Fast Mass-spring Systems

n (34 I
min | =k;||x;; —Xj, — P
Ipyll=tgo \2 91T 2T

Hooke’s




Projective Dynamics

Projective Dynamics: Fusing Constraint Projections for Fast Simulation

Sofien Bemaziz* Schastian Martin® Tiantian Lint T
LPFL VM Rescarch University of Pennsylvania Universi

Abstract

We present a new method for implieit time integration of physical
sysrems, Ongapproach builds a beidae bermeen nedal liniee Llement
methods and Position Fased Dynamics, leading Lo a simple. elficient,
obust, yet accurate solver that supports many different ypes of
cunstraints, We prupust specially designed encriy potentials tat
can be solved efficiently vsing an alternaring oprinizarien appeoach.
Iuspired by contnoun mechanics, we derive a setof conlinuum-
Irased potentials that can be efficiently incorporated vithin our salver,
W demonsirate the gencralily and Tubusiness of vur appruach in
many difterent applications ranging frem the -m\uhnm of
cloths, and shells, o cxample-based sicnulation.

Newton-based and Posifion l3ased Dynamics salvers hiphlight the
‘benefits of wor furmulation,

CR Categories: 137 [Computer Graphics: Three-Dimensional
Graphies Ammation; 1.6.8 [Simulation and Modeling]: Types of
Simalation—Animation

Keywords: physics-hased animatian, implicit [uler method, posi-
tion based dynamics, coatinvum mechanics,
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1 Intreduction

Thystes hased simulavion of deformable materul has beeome an in
dispensable ool in many areas of computer praphics. Virtual worlds,
and more recen(ly charuler animatons, incorporale sophisticated
simulations 1o greatly enhance visual experience, e g, by simulating
muscks, fal, hair. elohing, or vegelation, These models are of
Len bised on finite element discretizations of continuum-mechanics
Tormulations, dllowing highly acewrare simulation of complex non
linear materials

Besides realisin and aceuracy, a nuinber of other criteria are also
important in computer gruphics applicalions. By generatiry wo mean
the ability 1o sinlae a lage specteum of behaviors, sueh as dit-
ferent Lypes of geometrics (sulids, shells, vods), dilTerent material
propetties, or even ar-directable exrensions ro classic phyeics
simulalion, Robusmess refers o the capability 1o adegualely handle
diffienlt umngumuun including large deformations, degenarate
\'(.u(m.lm.: and i

relevance. Buikling un siup
and the resulting lightweight codebases

euses he maintenance of
sitmulators and makes then adaplable s specific apphication needs.

Pesformance is a crilical enabling criterion for realtime applications
Hewever, performance is ne less impoitant in offline simulations,
where the Wmaround me for lesing new seenes and simulation
parameters shoukl be minimized.

Current continuum mechanics approaches ofien have unfavorable
rrade-ofts between these criteria for eertain compurer graphics appli-
catinns, which I to the development of aliernative nethods, such
as Position sased Dynamics (PRLY). e to its generaliry, simpliciry.
mbustness. and efficiency, MBI is now implemented in a wide range
of high-end products mdudmg ThysX, Tavak Cloth, Maya nC lmh,
and Buller, Wil sed i reedtine PBD
15 also oflen used i oflime smulation. Toweser, the desirable qual-
itics of P11 cowme at the cost of imited accuracy, beease PBI is
nol rigorously derived from continuum mechanical principles.

We prpnse a new implicit intepration solver that bridges the gap

Projective Dynamics: Fusing Constraint

Projections for Fast Simulation

Sofien Bouaziz, Sebastian Martin, Tiantian Liu,

Ladislav Kavan, Mark Pauly
ACM Transactions on Graphics 33
of SIGGRAPH], 2014

VQNCOUCKr
SIGGRAPH2014 |
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Key ldea of Fast Mass-Spring Systems

E(x) = min (Z (WJ'”G]Tx - pJ'HZ))

J M~

/

|Discrete Shape Descriptor — Projection||?




Other Discrete Shape Descriptors

E(x) —;,ggg( WJI‘pJH )

Rest pose X Current pose x




Other Manifolds

E(x) = min (Z (WJ'”GITx ))

J




Intuitive Projection Manifold: SO(3)

»SO(3) ... Best Fit Rotation Matrix
» “As Rigid As Possible” [Chao et al. 2010]

Resolution Resolution Resolution Resolution
100)° 50°? 100% 50% 5

0
;\ 0
7




Intuitive Projection Manifold: SL(3)

» SL(3) ... Group of Matrices with det =1
» Volume Preservation




More Discrete Shape Descriptors:
Laplace-Beltrami operator

Bending: 1x Bending: 2.5x Bending: 25x

0.9ms/iteration - 10 iterations

Cvlinder Buckling 4880 DoF's - 7840 constraints




Results: Projective Dynamics




Remark: Projective Dynamics

E(x) = min (2 (wll6T - pf”2)>

J

1

1
— T _ T _ T
pmin s tr(G = TMG = ) + 5t (L) — tr(«TJp) + €

» Like before, M, L, ], c does not depend on x and p
» If we fix x -> easy to solve for p: Projection

-1
» If we fix p -> easy to solve for x: x* = (% + L) (ﬁy +]p)




Limitation: Projective Dynamics

w0 = pip (3, (eI

J N

/

|Discrete Shape Descriptor — Projection||?

Special Requirement for the Energy Representation




More Materials?
Soft ARAP Stiff ARAP




Spline-Based Materials [Xu et al. 2015}

Polynomial

SOft ARAP St]ff ARAP Material
[Xu et al. 2015]




uasi-Newton Methods for Real-Time Simulation of

perelastic Materials

Quasi-Newton Methods for Real-Time Simulation

of Hyperelastic Materials

TIANTIAN LIU

University of Pennsyhvania

SOFIEN BOUAZIZ

Ecole polytechnique fédérale de Lausanne
and

LADISLAV KAVAN

University of Utah

Wi present a new method for real-time plysics-based simulation supporiing
many different types of hyperelastic materials, Previous methods such as
Position-Based or Projective Dynamics are fast but support only a limited
salection of malerials; even classical materials such as the Neo-Hookean
elasticity are not supported. Receatly, Xu et al. [2015] imroducad new
“splin-based malerials” that can be easily controlled by artists 1o achieve
dosivd animation effcts Siaulation of thes (ypes of materias currotly
relies on Newton's method, which is slow, even with only one iteration per
timestop. In this article, we show that Projective Dynamics can be interpeet
s quasi-Newton method. This insight enables very efficient simalation of
a large class of hyperelastic materials, including the Neo-Hookean, spline-
based materials, and ohers. The quasi-Newton interpretation also allows
15 10 leverage ideas from numerical opimization. In particular, we show
that our solver can be farther accelerated using L-BFGS updates (Limite
‘memory Broyden-Fletcher-Goldfarb-Shanno algorithm), Our final method
istypically more than 10 times faster than ooe iteration of Newlon’s method
withioul compromising quality. In fact, our resultis ofien more accurate than
the result obtained with one iteration of Newton's method. Our method is
also easier 1o implement, implying reduced software development costs.

Categories and Subject Descriptors: 13.7 [Computer Graphies]: Three-
Dimensional Graphics and Realism—Animarion

Goneral Torms: Physics-hasad Animation

Additional Key Words and Phrases: Physics-hased animation, material mod-
els, numerical optimization
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1. INTRODUCTION

Physics-based animation is 1n \mpﬂ(\nm talin computer Lrapm:s
even th
a lot of patience. Wnlmg for results i not an option in realtime
simulations, which are necessary in applications such as computer
games and training simulators x (e, surgery simulators). Previous
methods for real-time ph uch as Position-Based Dynamics
[Miller et al. 2007] or Pm]mn\{ Dynamics [Bouaziz et al. 2014]
have been suceessfully used in many applications and commercial
products, despite the fact that these methods support oaly a re-
siricied set of material models. Even classical models from contin-
uum mechanics, such as the Neo-Hookean, St Venant-Kirchoff, or
Mooney-Rivlin materials, are not supported by Projective Dynam-
ics. We tried to emulate their behavior with Projective Dynamics,
but despite our best efforss, there are sill obvious visual diffcrences
wien compared 1o simulations with the original nonlinear materials,
antages of more general material models were micely
ated in the recent work of Xu el al. [2015), who pro-
poscd a new class of spline-based materials particularly suitable for
physics-hased animation. Their user-friendly spline imerface en-
ables artists to easily modify material properties in order to achieve
desired animation effects. However, their system relies on Newton's
method, which is slow, even if the number of Newton's ilerations
per frame is limited to one. Our method enables fast simalation
of spline-hased materials, combining the benefits of arist-fricndly
material interfaces with the advantages of fast simulation, such as
rapid iterations and/or higher resolutions.

Physics-based simulation can be formulated 35 an optimiza-
tion problem where we minimize a multivariale function . New-
ton's method minimizes ¢ by performing descent along dircction
5 1%, where Vg is the Hessian matrix, and Vg is the gra-
dicnt. One problem of Newton's method is that the Hessian Vg can
be indefinite, in which case Newton's direction could ermoneously
ase g. This undesired behavior can be prevented by
definiteness fixes [Teran et al. 2005; Nocedal and Wright 2006]
While fixes require some. averheads, the
slow speed of Newton's method is mainly caused by the fact that

AT TR 00 GRpHGs Yol 3. Ma. 3. At 23, PUIcalion e Ma 20

Quasi-Newton Methods for Real-Time Simulation
of Hyperelastic Materials
Tiantian Liu, Sofien Bouaziz, Ladislav Kavan
ACM Transactions on Graphics 36(3) [Presented at

SIGGRAPH],2017.

los
SIGGRAPH20




Reformulation of Projective Dynamics

1 1
—NT — T _ T
pin s tr(Ge = NTMG = ) + 5 (L) — tr(xTJp) +

xerPR%I}G 2:12 tr((c—y)"TM(x —y)) + = 1 tr(xTLx) tr(x"Jp(x)) + %tr(p(x)TSp(x))\

N Y,
e
g(x)




Reformulation of Projective Dynamics

1

xer?[%;lr}G T tr((x—y)T™™M(x—y)) += L tr(xTLx) —tr(xTJp(x)) + = tr(p(x)TSp(x))

g(x)




Projection Differential




Reformulation of Projective Dynamics

1

xer[n[%%la T tr((x—y)T™™M(x—y)) += L tr(xTLx) —tr(xTJp(x)) + = tr(p(x)TSp(x))

N
~
" g(x) .
Vg(X)=ﬁ(x—y)+Lx—]p(x)+ = Spa=Jrxy
M M 1M
h2+L) lyg(x) = x — (2+L) (—2y+]p)

x*=x—(M/h*+ L)y Vg(x) x




Reformulation of Projective Dynamics

Compare to one Newton step:
x"=x—alr’g(x) |7 Vg(x)

» «: Step size, usually decided by linesearch, typical value is 1.
» V2g(x): Hessian Matrix, M/h? + V?E (x)

x*=x—(M/h*+ L) Vg(x)




Quasi-Newton Formulation
x*=x —@@hz @‘Wg(x)

a=1

Projective Dynamics:
A Quasi Newton method applied
on a special type of energy




Supporting More General Materials
x*=x—a(M/h*+ L) 1Vg(x)

This quasi-Newton formulation can be used for any
hyperelastic material, but:

We need to do line-search
a = 1 only works for Projective Dynamics
We need to define the proper weights w;

, —
.+ M/h® + ¥ ;|wiG;G]

J

_




Strain-Stress Curve for PD

Stress

Strain




Supporting More General Materials
© M/R? 43,66

A

Stress

/ Strain




Supporting More General Materials




Quasi-Newton Algorithm

Algorithm 3: Quasi-Newton Solver with Backtracking Line Search.

x(M =y
g(xfl}) = evalﬂbjer:tive(x“))

fork=1..... numlterations do

L i

Vg(x*)) := evalGradient(x™) Compute Gradient
6x .= —(M/h? + L) 'Vg(x®)
a:=1/3

repeat
o = Po

X“C—Fl} — K“Lj _|_ C}ft']}{

g(x*+Y) := evalObjective(x 1))

until g(x*+1) < g(x®) + ya tr((Vg(x®)) Tox):

end




Quasi-Newton Algorithm

Algorithm 3: Quasi-Newton Solver with Backtracking Line Search.

x(M =y
g(xfl}) = evalﬂbjer:tive(x“))

fork=1..... numlterations do

& i

VQ(X“‘:}) = evalGradient(x{k})

0x := —(M/h2 + L)"1Vg(x™®) Evaluate Descent Direction
a:=1/3

repeat
o = Po

X“C—Fl} — K“Lj _|_ C}ft']}{

g(x*+Y) := evalObjective(x 1))

until g(x*+1) < g(x®) + ya tr((Vg(x®)) Tox):

end




Quasi-Newton Algorithm

Algorithm 3: Quasi-Newton Solver with Backtracking Line Search.

X“} =V
g(xM) := evalObjective(xV)

fork=1..... numlterations do

& i

VQ(X':H) = eval(}radient(x{“’})
6x .= —(M/h? + L) 'Vg(x®)
a:=1/3

repeat
a = fa

x(k+1) .— x(k) 1 qfx

g(x*+Y) := evalObjective(xF+1))

end

until g(x*+V) < g(x®) + ya tr((Vg(x¥))"éx):

Line Search




Quasi-Newton Algorithm

Algorithm 3: Quasi-Newton Solver with Backtracking Line Search.

x = y;

g(xfl}) = evalﬂbjer:tive(x“))

fork=1..... numlterations do

& i

VQ(X“‘:}) = evalGradient(x{k})
ox := —(M/h? + L)~'Vg(x¥)
a:=1/3

repeat

a = fo

xFH = xM 4+ adx

(k+1))

g(x = evalObjective(xF+1))

until g(x*+1) < g(x®) + ya tr((Vg(x®)) Tox):

end




We can do more

Broyden, Fletcher, Goldfarb, Shanno




L-BFGS Acceleration

Projective Dynamics

e

Quasi-Newton Method

e

Exact Solution

—




L-BFGS Acceleration

Quasi-Newton Projective Dynamics
Method

. 9




Core of Quasi-Newton Methods




L-BFGS with rest-pose Hessian

relative error

10°

1072

—Qur Hessian approximation, config 1 and 2
—Rest-pose Hessian, config 1
Rest-pose Hessian, config 2

10 15
number of iterations

20

E-E

Configuration 1

1= Wi

Configuration 2



L-BFGS with rest-pose Hessian

. 107 §
10°¢ | I
5
(1]
[AE]
=
m gt il
= i
L g
i
Rest—pDSE
Hessian
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L-BFGS with Scaled Identity
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Performance of L-BFGS family
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Results: Accuracy

Our method
a % //SV/;/A/ | /41//{;1?'[_1)1/& oy (%!
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Exact solution
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Results: Robustness

Randomized vertices

3




Results: Collision




Results: Anisotropy

Sotropic material Anisotropic material
4'5ms/frame 5i5ims/frame




Results: Spline-Based Materials

5 Spline-based material A Spline-based material B
Neosiioghean [Xu et al. 2015] [Xu et al. 2015]
[
M/ // i

Our method: 12.3 ms/frame Our method: 21.2 ms/frame Our method: 19.7 ms/frame
Newton: 178 ms/frame Newton: 188 ms/frame Newton: 187 ms/frame




Remark

» Our method is:

» General: supports a variety types of hyperelastic materials
» Fast: >10x faster compared to Newton’s method to achieve similar accuracy level

» Simple: avoids Hessian computation, avoids definiteness fix




Towards Real-time Simulation of

Deformable Objects:
Generalization of Spatial Discretization Models

Fast Mass Projective
Spring System Dynamics




Towards Real-time Simulation of
Deformable Objects:

Generalization of Material Models + Acceleration

Projective Quasi-Newton
Dynamics Methods




Towards Real-time Simulation of

Deformable Objects:
What’s Next?

p
Quasi-Newton
Methods
|




Core of Our Methods

h?2

M -1
Ax = — |— + L] Vg(X)




Core of Our Methods

M -1
Ax = — —+L Vg(X)

| k‘l




Time Varying Events

» Collisions

» Tearing or Cutting

\k‘?




Collisions

Control Panel

- State Control
Pause v
Step Once w]
Record =

- Visualization
Mesh Body =
Wireframe v
BVH
BVH Level -1
Line Width 2
Texture -

- Screen Resolution
Width 1920
Height 1017

- Verbose
Converge .
Optimization.. -
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Factorization.. +

Save Settings
Load Settings
Default Settings

Reset Camera
Reset Simulation
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@ Screenshot saved

=] [l
B FPG: 29.0 | Frame#: 40| #vertices: 3705, #elements: 13444 | Restshape Volume: 2227.2.!:urrent Wolume: 2227.2 (100.0%)




Collisions

] Mass-Spring System Simulation T.L.
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Collision: Soft Constraint

k 2
) (= x)R) L if(x—x)Tn < 0
Ecol— 2

0 ,otherwise




Collision: Soft Constraint

k l 2
E. . = ;0 ((x - xs)Tn) Jif(c—x)Tn<0
col —
0 ,otherwise

( T

co
\ 0 ,0therwise
( T

V2E | = kCOlnn ) lf(x o xS)Tn <0

coO

\ 0 ,otherwise




Quasi-Newton Algorithm with Collisions

Algorithm 3: Quasi-Newton Solver with Backtracking Line Search.

x(M =y
g(xfl}) = evalﬂbjer:tive(x“))

fork=1..... numlterations do

¥ i

Vg(x®)) := evalGradient(x®) VECO[
6x := —(M/h? + L) 'Vg(x®)
a:=1/3 0

repeat
a = Ba

x(k+1) . — x(k) L %

g(x*+Y) := evalObjective(xF+1)) ECOl
until g(x*+V) < g(x®) + ya tr((Vg(x®)))Tox):

end




Tearing
















Quasi-Newton Algorithm with Tearing

Algorithm 3: Quasi-Newton Solver with Backtracking Line Search.

x(M =y
g(xfl}) = evalﬂbjer:tive(x“))

fork=1..... numlterations do

¥ i

VQ(X“‘:}) = evalGradient(x{k}) O
ox = —(M/h? + L)' Vg(x¥)
o:=1/  Qriginal L

repeat
a = Ba

x(k+1) . — x(k) L %

g(x*+Y) := evalObjective(xF+1)) O
until g(x*+V) < g(x®) + ya tr((Vg(x®)))Tox):

end




Parallelization

» Local Step / Gradient Evaluation Step ?
» Yes
» Global Step / Decent Direction Evaluation ?

» Dependents on the Linear Solver




Choice of Linear Solver: Direct Solver

Pros: Cons:
Accurate Hard to Parallelize
Fast in CPU if Prefactorized Memory Consuming




Choice of Linear Solver: Iterative Solvers

[Wang 2015] [Fratarcangeli et al. 2016]




Choice of Linear Solver: CG

10° ¢

a
k.

Our method with
.., . prefactorized direct solver
L.;.. e ::-.-.-.-..-----.-....m_._._.... S L LT T POV — Our method with
| . S, e, 5 CG iterations
10'2 \ ~ ., , . Our method with
\ \ * o, 15 CG iterations
\ \ ., tteena,,.. Newton's method
\ ~ >, with direct solver
Newton's method
104 H \ g S . with 5 CG iterations
\ A% - - Newton's method
\ with 15 CG iterations
\ e, [Gast et al. 2015] with
\ ‘e, 5 CG iterations
10 \ ", - _[Gast et al. 2015] with
15 CG iterations

relative error
”
!/

0 1 2 3 4 5
time (seconds)




Simulating Stiff/Rigid Materials

RIGHT ARM INNER VIEW,
HUMERUS

ULNA

RADIUS

EXPLAINING CERTAIN MATTERS IN THE MOVE-
MENT OF THE ELBOW-JOINT.

A. In the straightened-out arm the posterior crest of the semi-
lunar notch of the ulna lodges in a hollow on the back of
the humerus. B. In the bent arm the anterior crest of the

notch lodges in a hollow on the front of the humerus. C. The point of the elbow,

very conspicuous in the bent arm.




Simulating Stiff/Rigid Materials

[Image courtesy of FistfulOfTalent.com]




Increasing Stiffness Directly?

Implicit springs Compliant constraints Projective Our Time step: 0.01s
- —= | Dynamics method
Linear Non-linear Linear Non-linear [Bouaziz2014] Linear
solver solver solver solver solver
L e ] B Gl Ol L e L 2 L =2 @ —
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c=1e-15

Bassossseon Srassresven baosososoa
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Using Hard Constraints

e

[Tournier et al. 2015]




Using Hard Constraints (Cont’d)

x=RX+t




Damping

» Current damping model: post-processing models - Ether drag, PBD damping

Cs = 09 509

[Li et al. 2018]




Other Time Integrators

» More vivid motion?

» Other Integrators
» Implicit Midpoint
» Newmark-Beta
» BDF2
» [Bathe 2007] Integrator

» Energy Momentum Methods
» [Dimitar et al. 2018]




What’s Next?

» Bring Machine Learning to Physics?

[Video courtesy of Junior Rojas]




A Bigger Picture

Forward Physics

Inverse Physics




A Bigger Picture

xT

Phys-based
Simulation







